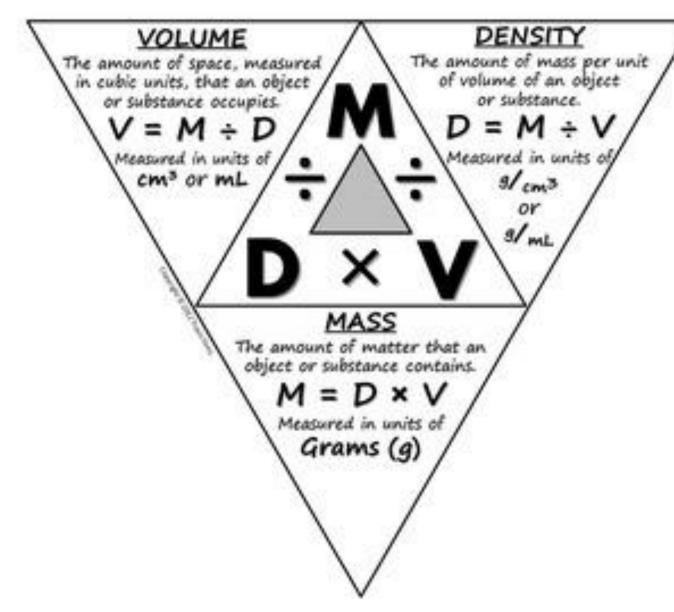

[5.2] - Derived Quantities and Significant Figures

What is a derived quantity?

- A derived quantity is a number made by combining two or more other values.
- A derived unit is a unit which is made by combining two or more units.
- A derived quantity is usually found in formulas as a variable.

Examples: Density (g/mL), Velocity (m/s)

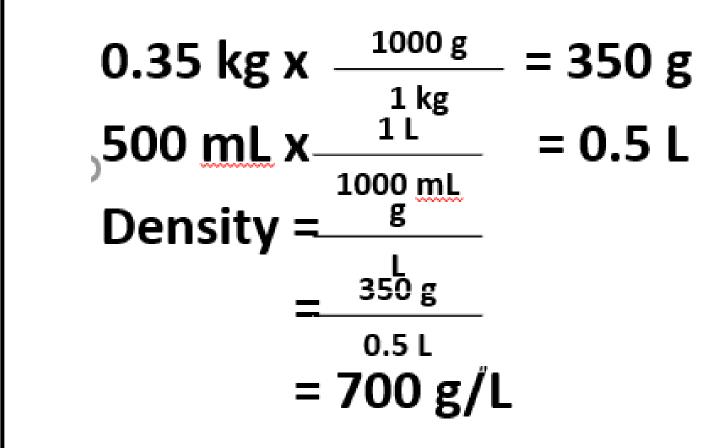

Steps to solve for derived quantities:

- 1. Rearrange equation as in math.
- 2. The units that remain in the final answer are combined as the derived unit.

Common SI Units

Quantity	Written Unit	Unit Symbol
Length	Meter	m
Mass	gram, kg	g, kg
Time	Second	S
Amount of substance	Mole	mol
Volume	Liter	L

Solving for Density


The formula for density can be rearranged to solve for for the required unit.

Density (g/mL) Mass (g) Volume (mL)

 $\mathbf{D} = \mathbf{m/v}$

A rock has a mass of 0.35 kg and a volume of 500 mL. What is its density in g/L? (Show your work)

A rock has a mass of 0.35 kg and a volume of 500 mL. What is its density in g/L? (Show your work)

Convert 5.00 g/cm³ into kg/m³

Convert 5.00 g/cm³ into kg/m³

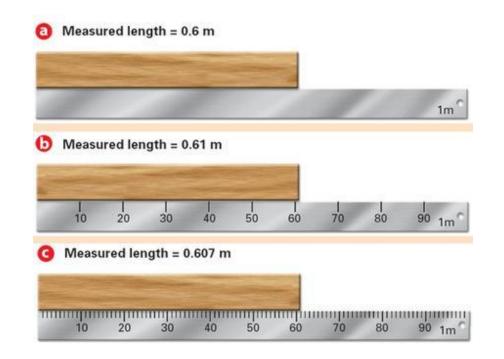
$$5.00 \ \frac{g}{cm^3} \times \frac{1kg}{1000g} \times \frac{100cm}{1m} \times \frac{100cm}{1m} \times \frac{100cm}{1m} = 5000 \frac{kg}{m^3}$$
OR
$$5.00 \ \frac{g}{cm^3} \times \frac{1kg}{1000g} \times \frac{1 \times 10^6 cm^3}{1m^3} = 5000 \frac{kg}{m^3}$$

Convert a velocity of 40.0 miles per hour to kilometers per hour.

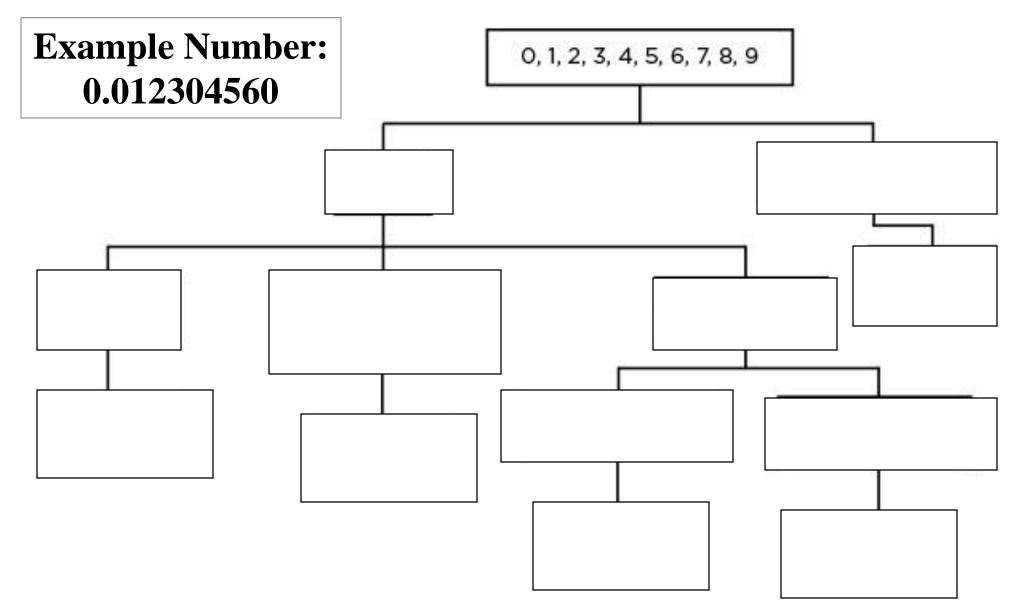
(1 mile = 5280 ft, 1 ft = 12 in, 1 in = 2.54 cm)

Convert a velocity of 40.0 miles per hour to kilometers per hour.

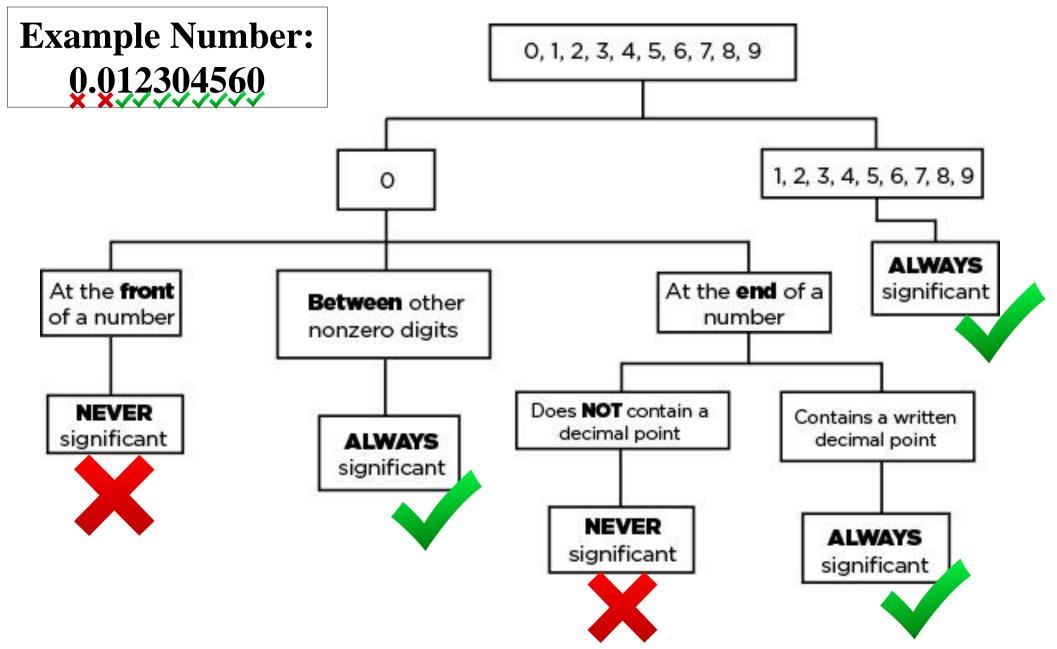
(1 mile = 5280 ft, 1 ft = 12 in, 1 in = 2.54 cm)


$$40.0 \ \frac{mi}{hr} \times \frac{5280ft}{1mi} \times \frac{12 \ in}{1ft} \times \frac{2.54cm}{1in} \times \frac{1m}{100cm} \times \frac{1km}{1000m} = 64.37 \ \frac{km}{hr}$$

How do we write our answers?


- We use what is known as significant figures
- A significant figure
 - is a measured or meaningful digit.
 - is the **total** number of digits needed to write a given value without losing certainty

Purpose of Significant Figures


- We need use them because:
 - Each measurement may have different accuracy
 - Numbers we record using different measurements have different accuracy

Significant Figure Rules

Significant Figure Rules

• Underline the significant figures in the following examples:

• a) 5 600	b) 8 060	c) 3.090	d) 0.0112
• e) 0.002	f) 4.007	g) 0.0040	h) 0.0390
• i) 0.00700	j) 8 000	k) 0.06	l) 120.0

• Underline the significant figures in the following examples:

• a) <u>5 6</u> 00	b) <u>8 06</u> 0	c) <u>3.090</u>	d) 0.0 <u>112</u>
• e) 0.00 <mark>2</mark>	f) <mark>4.007</mark>	g) 0.00 <mark>40</mark>	h) 0.0 <mark>390</mark>
• • i) 0.00 <u>700</u>	j) <u>8</u> 000	k) 0.0 <u>6</u>	l) <u>120.0</u>

•Round the number 840.556 and write it with...

a) five sig figs = ____ b) four sig figs = $_$ c) two sig figs = $_$ d) one sig fig = ____

•Round the number 840.556 and write it with...

- a) five sig figs = $\underline{840.56}$
- b) four sig figs = $\underline{840.6}$
- c) two sig figs = $\underline{840}$

d) one sig fig =
$$\underline{800}$$

HOMEWORK

HOMEWORK [5.2]

- Page 26 Questions: 31 37
- Page 28 Question: 42 (a h)
- Page 37 Question: 55 (a j)